
Madison & Ana
Summer 2023

CS 161
Computer Security Discussion 8

Question 1 Boogle
Boogle is a social networking website that’s looking into expanding into other domains. Namely,
they recently started a map service to try their hand at fusing that with social media. The URL for
the main website is https://www.boogle.com, and they want to host the map service at https:
//maps.boogle.com.

Q1.1 For each of the following webpages, determine whether the webpage has the same origin as
http://boogle.com/index.html, and provide a brief justification.

i. https://boogle.com/index.html

ii. http://maps.boogle.com

iii. http://boogle.com/home.html

iv. http://maps.boogle.com:8080
Q1.2 Describe how to make a cookie that will be sent to only Boogle’s map website and its subdomains.

Q1.3 How can Boogle ensure that cookies are only transmitted encrypted so eavesdroppers on the
network can’t trivially learn the contents of the cookies?

Q1.4 Boogle wants to be able to host websites for users on their servers. They decide to host each user’s
website at https://[username].boogle.com. Why might this not be a good idea?

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 4

https://www.boogle.com
https://maps.boogle.com
https://maps.boogle.com
http://boogle.com/index.html
https://boogle.com/index.html
http://maps.boogle.com
http://boogle.com/home.html
http://maps.boogle.com:8080
https://[username].boogle.com

Q1.5 Propose an alternate scheme so that Boogle can still host other users websites with less risk, and
explain why this scheme is better.

Note: It is okay if the user sites interfere with each other, as long as they cannot affect official
Boogle websites.

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 4 –

Question 2 Session Fixation
A session cookie is used by most websites in order to manage user logins. When the user logs in, the
server sends a randomly-generated session cookie to the user’s browser. The server also stores the
cookie value in a database along with the corresponding username. The user’s browser sends the session
cookie to the server whenever the user loads any page on the site. The server then looks the session
cookie up in the database and retrieves the corresponding username. Using this, the server can know
which user is logged in.

Some web application frameworks allow cookies to be set by the URL. For example, visiting the URL

http://foobar.edu/page.html?sessionid=42.

will result in the server setting the sessionid cookie to the value “42”.

Q2.1 Can you spot an attack on this scheme?

Q2.2 Suppose the problem you spotted has been fixed as follows: foobar.edu now establishes new
sessions with session IDs based on a hash of the tuple (username, time of connection). Is
this secure? If not, what would be a better approach?

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 4 –

Question 3 Cross-Site Request Forgery (CSRF)
In a CSRF attack, a malicious user is able to take action on behalf of the victim. Consider the following
example. Mallory posts the following in a comment on a chat forum:

Of course, Patsy-Bank won’t let just anyone request a transaction on behalf of any given account name.
Users first need to authenticate with a password. However, once a user has authenticated, Patsy-Bank
associates their session ID with an authenticated session state.

Q3.1 Explain what could happen when Alice visits the chat forum and views Mallory’s comment.

Q3.2 Patsy-Bank decides to check that the Referer header contains patsy-bank.com. Will the attack
above work? Why or why not?

Q3.3 Describe one way Mallory can modify her attack to always get around this check.

Q3.4 Recall that the Referer header provides the full URL. HTTP additionally offers an Origin header
which acts the same as the Referer but only includes the website domain, not the entire URL.
Why might the Origin header be preferred?

Q3.5 Almost all browsers support an additional cookie field SameSite. When SameSite=strict, the
browser will only send the cookie if the requested domain and origin domain correspond to the
cookie’s domain. Which CSRF attacks will this stop? Which ones won’t it stop? Give one big
drawback of setting SameSite=strict.

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 4 –

