
Madison & Ana
Summer 2023

CS 161
Computer Security Discussion 7

Question 1 RISELab Shenanigans
Certificate authorities of UC Berkeley are organized in a hierarchy as follows:

UC Berkeley

Campus Buildings

Soda Hall Cory Hall

Campus Labs

RISE Lab ADEPT Lab

Alice is a student in RISELab at UC Berkeley and wants to obtain a certificate for her public key. Assume
that only RISELab is allowed to issue certificates to Alice.

Q1.1 Which of the following values are included in the certificate issued to Alice? Select all that apply.

Alice’s public key

Alice’s private key

A signature on Alice’s public key, signed by RISELab’s private key

A signature on Alice’s private key, signed by RISELab’s private key

None of the above

Solution: This follows from the definition of certificates: they include a user’s public key, and
a signature on the enclosed public key, signed by the issuer (which we state in the prologue is
RISELab).

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 9

Q1.2 Assume that the only public key you trust is UC Berkeley’s public key. Which certificates do you
need to verify in order to be sure that you have Alice’s public key? Select all that apply.

Certificate for Alice

Certificate for Soda Hall

Certificate for RISELab

Certificate for Campus Labs

None of the above

Solution: To validate Alice’s public key, we can follow our way up to our root of trust (which
is UC Berkeley’s public key). As such, we need certificates for Alice, RISELab, and Campus
Labs.

Q1.3 RISELab issues a certificate to Alice that expires in 1 hour. Which of the following statements are
true about using such a short expiration date? Select all that apply.

It mitigates attacks where Alice’s private key is stolen

It mitigates attacks where RISELab’s private key is stolen

It mitigates attacks where Campus Labs’ private key is stolen

It forces Alice to renew the certificate more often

None of the above

Solution: Short expiration times only mitigate the situation where Alice’s private key is
stolen. If RISELab’s private key is compromised, the attacker can issue certificates with any
expiration date, and it is up to the parent CA to revoke RISELab’s certificate, not RISELab itself.
The same argument applies to Campus Labs’ private key.

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 9 –

Question 2 Password Storage
Bob is trying out different methods to securely store users’ login passwords for his website.

Mallory is an attacker who can do some amount of offline computation before she steals the passwords
file, and some amount of online computation after stealing the passwords file.

Technical details:

• Each user has a unique username, but several users may have the same password.
• Mallory knows the list of users registered on Bob’s site.
• Bob has at most 500 users using his website with passwords between 8–12 letters.
• Mallory’s dictionary contains all words that are less than 13 letters. [Clarification during exam:
Mallory’s dictionary contains all possible user passwords.]

• Mallory can do N online computations and 500N offline computations where N is the number
of words in the dictionary.

• Slow hash functions take 500 computations per hash while fast hash functions require only 1
computation.1

Notation:

• HS and HF, a slow and fast hash function
• Sign, a secure signing algorithm
• uname and pwd, a user’s username and password
• k, a signing key known only by Bob

If Bob decides to use signatures in his scheme, assume he will verify them when processing a log-in.

For each part below, indicate all of the things Mallory can do given the password storage scheme.
Assume Mallory knows each scheme. Unless otherwise specified, assume that she can use both
offline and online computation

Q2.1 Each user’s password is stored as HF(pwd || 'Bob').

(A) Learn whether two users have the same
password with only online computation

(B) Learn a specific user’s password

(C) Change a user’s password without detec-
tion

(D) Learn every user’s password

(E) None of the above

(F)

Solution: Since this is a hash function with the same salt, Mallory can do one full run through
of the dictionary with online computation to learn each user’s password. Additionally, there
are no authenticity checks so Mallory can edit a password.

1Keep in mind this is much faster than a real-life slow hash function.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 9 –

Q2.2 Each user’s password is stored as the tuple (HS(pwd || 'Bob'),Sign(k,HF(pwd))).

(G) Learn whether two users have the same
password with only online computation

(H) Learn a specific user’s password

(I) Change a user’s password without detec-
tion

(J) Learn every user’s password

(K) None of the above

(L)

Solution: Because of the slow hash, Mallory can only longer do a full run through of the
dictionary using online computation. However, she can do so using offline computation since
the salt is the same for all passwords. Since the signature does not include the username,
password entries can be swapped without detection.

An earlier version of the solutions incorrectly marked (A) as incorrect. However, since signa-
tures are unsalted, an attacker can learn if two users have the same password by comparing
signatures (which requires no computation).

Q2.3 Each user’s password is stored as the tuple (HF(pwd || uname), Sign(k, uname || HF(pwd)))

(A) Learn whether two users have the same
password with only online computation

(B) Learn a specific user’s password

(C) Change a user’s password without detec-
tion

(D) Learn every user’s password

(E) None of the above

(F)

Solution: Because the salt is now different, Mallory only has enough online computation to
bruteforce a single password. However, using offline computation she can still learn all the
passwords since she can bruteforce the dictionary 500 times. Since each signature is tied to a
specific user and Mallory doesn’t know k, she can’t edit a user’s password.

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 9 –

Q2.4 Each user’s password is stored as (HS(pwd || uname),Sign(k,HS(pwd)))

[Clarification during exam: The expression was missing a leading parenthesis.]

(G) Learn whether two users have the same
password with only online computation

(H) Learn a specific user’s password

(I) Change a user’s password without detec-
tion

(J) Learn every user’s password

(K) None of the above

(L)

Solution: Mallory only has enough total computation to learn a single user’s password,
denoted as pwd′. She can now edit a different user’s password to be this by computing
HS(pwd

′ || uname) and using the signature Sign(k,HS(pwd
′))). Note this is possible because

the signature isn’t bound to any specific user.

An earlier version of the solutions incorrectly marked (A) as incorrect. However, since signa-
tures are unsalted, an attacker can learn if two users have the same password by comparing
signatures (which requires no computation).

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 9 –

Question 3 Brainf[REDACTED]
Consider the following code:

1 void exe cu t e (char ∗ commands , F ILE ∗ f i l e) {
2 in t bu f_ ind = 0 ;
3 in t bu f _ l en = 1 6 ;
4 char buf [bu f _ l en] ;
5 s i z e _ t comm_ind = 0 ;
6 while (commands [comm_ind]) {
7 i f (commands [comm_ind] == ’C ’) {
8 bu f_ ind += 1 ;
9 } e l se i f (commands [comm_ind] == ’D ’) {
10 bu f_ ind −= 1 ;
11 } e l se i f (commands [comm_ind] == ’E ’) {
12 p r i n t f ("%c " , buf [bu f_ ind]) ;
13 } e l se i f (commands [comm_ind] == ’ F ’) {
14 p r i n t f ("%x " , &buf [bu f_ ind]) ;
15 } e l se i f (commands [comm_ind] == ’G ’) {
16 f r e a d (& buf [bu f_ ind] , s i z eo f (char) , 1 , f i l e) ;
17 }
18 / ∗ assume you a r e p r o v i d e d two f u n c t i o n s : min and max . ∗ /
19 bu f_ ind = max (0 , min (bu f_ l en , bu f _ ind)) ;
20 comm_ind += 1 ;
21 }
22 }

For this question, assume the following:

• You may use SHELLCODE as a 52-byte shellcode.

• Stack canaries are enabled, and all other memory safety defenses are disabled.

• If needed, you may use the standard output as OUTPUT, slicing it using Python syntax.

• The RIP of execute is located at 0xffffabcc.

• The top of the stack is located at 0xffffffff.

• execute is called from main with the proper arguments.

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 9 –

Q3.1 (4 min) Fill in the following stack diagram, assuming that the program is paused after executing
Line 6, including the arguments of execute (the value in each row does not necessarily have to
be four bytes long).

Stack

Solution: Stack diagram:

[4] File *file
[4] char* commands
[4] RIP execute
[4] SFP execute
[4] canary
[4] buf_ind
[4] buf_len
[16] buf
[4] comm_ind

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 9 –

Q3.2 (12 min) We wish to construct a series of inputs that will cause this program to execute
SHELLCODE that works 100% of the time.

Provide a string input to variable commands (argument to execute):

Solution: 'C' * 16 + 'G' + 'C' * 16 + 'GC' * 4 + 'C' * 8 + 'GC' * 52

Provide a string for the contents of the file that is passed in as the file argument of execute:

Solution: '\xff' + '\xd8\xab\xff\xff' + SHELLCODE

Solution:
Exploit’s Concept: The min/max logic on line 19 of the function introduces an off-by-one
vulnerability, allowing buf_ind to go one index past the end of buf.

Using this off-by-one and the G command, we can change the LSB of buf_len to any value of
our choosing. Thus, we can increase the value of buf_len from 16 to 255. Now buf_len can
further up the stack.

This allows us to now move buf_ind up to the RIP of execute and overwrite it with the
address of our shellcode, and then write SHELLCODE above the RIP of execute.

One thing to be careful about in the previous step is that SHELLCODE cannot be placed directly
after the RIP of execute, because this will overwrite the commands and file pointers,
causing the function to not process future commands and inputs correctly.

Exploit Construction: We begin with 16 C commands to move buf_ind to the LSB of
buf_len. Next, we include one G command so that we read one byte from file and write
it to the LSB of buf_len. We include an 0xff byte in file so that this G command will
change buf_len from 0x00000010 (16) to 0x000000ff (255). Now buf_ind is allowed to
move anywhere between 0 and 255 (inclusive).

Taking advantage of this, we can now use 16 C commands to move buf_ind to the RIP of
execute. Next, we will use a G command to read a byte from file into the LSB of the RIP of
execute. We want this byte from file to be the LSB of the address of our SHELLCODE, which
we will calculate momentarily. We then use a C command to move buf_ind to the next byte
of the RIP of execute. We repeat three more GC commands to write the three remaining
bytes of RIP of execute.

Recall that we cannot directly write the SHELLCODE right after the RIP of execute because
we cannot overwrite the arguments of execute. Thus, we must write SHELLCODE after the
two arguments of execute, meaning buf_ind must go up 8 more bytes. Thus, we include
another 8 C commands. Now, we can write SHELLCODE into memory using 52 repeated GC
commands. The address SHELLCODE will be written at is above file, which is 12 bytes above
the RIP of execute. We are given that the address of the RIP of execute is 0xffffabcc,
so 12 bytes above this 0xffffabd8.

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 9 –

Q3.3 (3 min) If ASLR is now enabled, which of the following modifications to the provided code would
allow you to execute SHELLCODE 100% of the time? Select all that apply.

Line 10 is replaced with scanf("%u", &buf_ind).

jmp *esp is located in your code at 0xdeadbeef.

Line 14 is replaced with comm_ind = getchar().

None of the above

Solution: We need two things to make ASLR work: we need to leak an address and we need
to have a way to pause the program. We can pause the program with scanf and getchar.
However,getchar gets rid of the line that leaks the address. jmp *esp,while itwould normally
work, overwrites the file pointer, which is required during the fread calls.

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 9 –

