## Madison \& Ana Summer 2023

## Question 1 Ra's Al Gamal

Recall the ElGamal scheme from lecture:

- $\operatorname{KeyGen}()=\left(b, B=g^{b} \bmod p\right)$
- $\operatorname{Enc}(B, M)=\left(C_{1}=g^{r} \bmod p, C_{2}=B^{r} \times M \bmod p\right)$

Q1.1 Is the ciphertext $\left(C_{1}, C_{2}\right)$ decryptable by someone who knows the private key $b$ ? If you answer yes, provide a decryption formula. You may use $C_{1}, C_{2}, b$, and any public values.

- Yes
$\bigcirc$ No

Solution: The decryption formula is $M=C_{1}^{-b} \times C_{2}$.
Q1.2 Consider an adversary that can efficiently break the discrete log problem. Can the adversary decrypt the ciphertext $\left(C_{1}, C_{2}\right)$ without knowledge of the private key? If you answer yes, briefly state how the adversary can decrypt the ciphertext.

- Yes
$\bigcirc$ No

Solution: An adversary that can break the discrete $\log$ problem can recover $r$ from $C_{1}=g^{r}$ or $b$ from $B=g^{b}$, so they can compute $g^{b r}$ and recover the original message.

Q1.3 Consider an adversary that can efficiently break the Diffie-Hellman problem. Can the adversary decrypt the ciphertext ( $C_{1}, C_{2}$ ) without knowledge of the private key? If you answer yes, briefly state how the adversary can decrypt the ciphertext.

- Yes
O No

Solution: An adversary that can break the Diffie-Hellman problem can recover $g^{b r}$ from $C_{1}=g^{r}$ and $B=g^{b}$, so they can recover the original message.

## Question 2 Dual Asymmetry

Alice wants to send two messages $M_{1}$ and $M_{2}$ to Bob, but they do not share a symmetric key.
Assume that $p$ is a large prime and that $g$ is a generator $\bmod p$, like in ElGamal. Assume that all computations are done modulo $p$ in Scheme A.

Q2.1 Scheme A: Bob publishes his public key $B=g^{b}$. Alice randomly selects $r$ from 0 to $\mathrm{p}-2$. Alice then sends the ciphertext $\left(R, S_{1}, S_{2}\right)=\left(g^{r}, M_{1} \times B^{r}, M_{2} \times B^{r+1}\right)$.

Select the correct decryption scheme for $M_{1}$ :

- $R^{-b} \times S_{1}$
$\bigcirc B^{-b} \times S_{1}$
$\bigcirc R^{b} \times S_{1}$
$\bigcirc B^{b} \times S_{1}$


## Solution:

$$
\begin{aligned}
S_{1} & =M_{1} \times B^{r} & & \text { Given in the question } \\
S_{1} & =M_{1} \times g^{b r} & & \text { Substitute } B=g^{b} \\
M_{1} & =g^{-b r} \times S_{1} & & \text { Multiply both sides by } g^{-b r} \\
M_{1} & =R^{-b} \times S_{1} & & \text { Substitute } R=g^{r}
\end{aligned}
$$

Q2.2 Select the correct decryption scheme for $M_{2}$ :
$B^{-1} \times R^{-b} \times S_{2}$
$\bigcirc B^{-1} \times R^{b} \times S_{2}$
$\bigcirc B \times R^{-b} \times S_{2}$
$\bigcirc B^{-1} \times R \times S_{2}$

## Solution:

$$
\begin{aligned}
S_{2} & =M_{2} \times B^{r+1} & & \text { Given in the question } \\
S_{2} & =M_{2} \times g^{b(r+1)} & & \text { Substitute } B=g^{b} \\
S_{2} & =M_{2} \times g^{b r+b} & & \text { Exponentiation properties } \\
M_{2} & =g^{-b r-b} \times S_{2} & & \text { Multiply both sides by } g^{-b r-b} \\
M_{2} & =g^{-b r} \times g^{-b} \times S_{2} & & \text { Exponentiation properties } \\
M_{2} & =R^{-b} \times B^{-1} \times S_{2} & & \text { Substitute } B=g^{b} \text { and } R=g^{r} \\
M_{2} & =B^{-1} \times R^{-b} \times S_{2} & & \text { Rearrange terms }
\end{aligned}
$$

Q2.3 Is Scheme A IND-CPA secure? If it is secure, briefly explain why (1 sentence). If it is not secure, briefly describe how you can learn something about the messages.

Clarification during exam: For Scheme A, in the IND-CPA game, assume that a single plaintext is composed of two parts, $M_{1}$ and $M_{2}$.
O Secure

- Not secure

Solution: This scheme is not IND-CPA secure. Eve can determine if $M_{1}=M_{2}$ by checking if $S_{2}=S_{1} \times B$.

Q2.4 Scheme B: Alice randomly chooses two 128 -bit keys $K_{1}$ and $K_{2}$. Alice encrypts $K_{1}$ and $K_{2}$ with Bob's public key using RSA (with OAEP padding) then encrypts both messages with AES-CTR using $K_{1}$ and $K_{2}$. The ciphertext is $\operatorname{RSA}\left(\mathrm{PK}_{\text {Bob }}, K_{1} \| K_{2}\right), \operatorname{Enc}\left(K_{1}, M_{1}\right), \operatorname{Enc}\left(K_{2}, M_{2}\right)$.

Which of the following is required for Scheme B to be IND-CPA secure? Select all that apply.
$\square K_{1}$ and $K_{2}$ must be different

- A different IV is used each time in AES-CTR
$\square M_{1}$ and $M_{2}$ must be different messages
$\square \quad M_{1}$ and $M_{2}$ must be a multiple of the AES block size
$\square M_{1}$ and $M_{2}$ must be less than 128 bits long
$\square$ None of the above


## Solution:

A: False. Because Enc is an IND-CPA secure encryption algorithm, the key does not need to be changed between two encryptions.

B: True. AES-CTR requires that a unique nonce is used for each encryption, or it loses its confidentiality guarantees.

C: False. A secure encryption algorithm would not leak the fact that two messages are the same.

D: AES-CTR can encrypt any length of plaintext. Padding is not needed in AES-CTR.
E: AES-CTR can encrypt any length of plaintext.

## Question 3 Why do RSA signatures need a hash?

To generate RSA signatures, Alice first creates a standard RSA key pair: $(n, e)$ is the RSA public key and $d$ is the RSA private key, where $n$ is the RSA modulus. For standard RSA signatures, we typically set $e$ to a small prime value such as 3; for this problem, let $e=3$.

Suppose we used a simplified scheme for RSA signatures that skips using a hash function and instead uses message $M$ directly, so the signature $S$ on a message $M$ is $S=M^{d} \bmod n$. In other words, if Alice wants to send a signed message to Bob, she will send $(M, S)$ to Bob where $S=M^{d} \bmod n$ is computed using her private signing key $d$.

Q3.1 With this simplified RSA scheme, how can Bob verify whether $S$ is a valid signature on message $M$ ? In other words, what equation should he check, to confirm whether $M$ was validly signed by Alice?

Solution: $S^{3}=M \bmod n$.
Q3.2 Mallory learns that Alice and Bob are using the simplified signature scheme described above and decides to trick Bob into beliving that one of Mallory's messages is from Alice. Explain how Mallory can find an $(M, S)$ pair such that $S$ will be a valid signature on $M$.

You should assume that Mallory knows Alice's public key $n$, but not Alice's private key $d$. The message $M$ does not have to be chosen in advance and can be gibberish.

Solution: Mallory should choose some random value to be $S$ and then compute $S^{3} \bmod n$ to find the corresponding $M$ value. This ( $M, S$ ) pair will satisfy the equation in part (a).

Alternative solution: Choose $M=1$ and $S=1$. This will satisfy the equation.

Q3.3 Is the attack in Q3.2 possible against the standard RSA signature scheme (the one that includes the cryptographic hash function)? Why or why not?

Solution: This attack is not possible. A hash function is one way, so the attack in part (b) won't work: we can pick a random $S$ and cube it, but then we'd need to find some message $M$ such that $H(M)$ is equal to this value, and that's not possible since $H$ is one-way.

Comment: This is why the real RSA signature scheme includes a hash function: exactly to prevent the attack you've seen in this question.

