CS 161 Computer Security

Exam Prep 4

Q1 AES-161

Madison & Ana

Summer 2023

(23 points)

Alice has created a scheme called AES-161 to send messages to Bob securely in the presence of a man-in-the-middle attacker Mallory. Alice and Bob both share a symmetric key K that is secret from everyone else.

The encryption scheme for AES-161 is as follows:

 $C_1 = E_K (IV_1 \oplus M_1)$ $C_2 = E_K (C_1 \oplus IV_2 \oplus M_2)$ $C_i = E_K (C_{i-1} \oplus C_{i-2} \oplus M_i)$

- Q1.1 (3 points) Write the decryption formula of AES-161 for M_i , for i > 2.
- Q1.2 (4 points) Is this scheme IND-CPA secure with randomly generated IVs? If you mark "Yes", provide a brief justification (10 words or fewer; no formal proof necessary). If you mark "No", provide a strategy to win the IND-CPA game with probability greater than 1/2.

O Yes

O No

Consider the following attack, called the FEI attack:

Given a ciphertext C of a known plaintext M, Mallory wishes to provide C' such that some subset of blocks of Mallory's choosing would be decrypted to M'_i , where both i and M'_i are **any values of Mallory's choosing**. For other values of i, the corresponding M'_i s **can be anything**.

For example, let's say Mallory wants to provide a C' so that the first and last blocks of an 8-block message are decrypted into values M'_1 and M'_8 of her choosing while blocks 2 through 7 are not necessarily values of her choosing. In other words, when Bob decrypts the ciphertext C', he will get

$$M_1' \|x_1\| x_2 \|x_3\| x_4 \|x_5\| x_6 \|M_8'$$

where x_i refers to any value.

Q1.3 (6 points) Alice wishes to send a 3-block message M. Mallory wants to perform the FEI attack on the third block.

Provide a formula for all C'_i that differ from their corresponding C_i in terms of M_i , C_i , M'_i , and C'_i for specific values of *i*. Your formula may also include any public values. You don't need to provide a formula for any $C'_i = C_i$.

Q1.4 (5 points) Assume that Alice is sending a 9-block message. What is the maximum number of blocks that Mallory can perform the FEI attack on?

Q1.5 (5 points) Assume that Alice is sending a 9-block message. Mallory wants to perform the FEI attack on the maximum number of blocks. You can pick which blocks the FEI attack is performed on.

Provide a formula for all C'_i that differ from their corresponding C_i in terms of M_i , C_i , M'_i , and C'_i for specific values of i. Your formula may also include any public values. You don't need to provide a formula for any $C'_i = C_i$.

Q2 AES-GROOT

(30 points)

Tony Stark develops a new block cipher mode of operation as follows:

$$C_0 = IV$$

$$C_1 = E_K(K) \oplus C_0 \oplus M_1$$

$$C_i = E_K(C_{i-1}) \oplus M_i$$

$$C = C_0 \|C_1\| \cdots \|C_n$$

For all parts, assume that *IV* is randomly generated per encryption unless otherwise stated.

- Q2.1 (3 points) Write the decryption formula for M_i using AES-GROOT. You don't need to write the formula for M_1 .
- Q2.2 (3 points) AES-GROOT is not IND-CPA secure. Which of the following most accurately describes a way to break IND-CPA for this scheme?
 - O It is possible to compute a deterministic value from each ciphertext that is the same if the first blocks of the corresponding plaintexts are the same.
 - \bigcirc C_1 is deterministic. Two ciphertexts will have the same C_1 if the first blocks of the corresponding plaintexts are the same.
 - **O** It is possible to learn the value of *K*, which can be used to decrypt the ciphertext.
 - \bigcirc It is possible to tamper with the value of IV such that the decrypted plaintext block M_1 is mutated in a predictable manner.
- Q2.3 (5 points) AES-GROOT is vulnerable to plaintext recovery of the first block of plaintext. Given a ciphertext C of an unknown plaintext M and different plaintext-ciphertext pair (M', C'), provide a formula to recover M_1 in terms of C_i , M'_i , and C'_i (for any i, e.g. C_0 , M'_2 , C'_6).

Recall that the IV for some ciphertext C can be referred to as C_0 .

If AES-GROOT is implemented with a fixed $IV = 0^b$ (a fixed block of b 0's), the scheme is vulnerable to full plaintext recovery under the chosen-plaintext attack (CPA) model. Given a ciphertext C of an unknown plaintext and different plaintext-ciphertext pair (M', C'), describe a method to recover plaintext block M_4 .

Q2.4 (5 points) First, the adversary sends a value M'' to the challenger. Express your answer in terms of in terms of C_i , M'_i , and C'_i (for any *i*).

Q2.5 (5 points) The challenger sends back the encryption of M'' as C''. Write an expression for M_4 in terms of C_i , M'_i , C'_i , M''_i , and C''_i (for any *i*).

- Q2.6 (4 points) Which of the following methods of choosing *IV* allows an adversary under CPA to fully recover an arbitrary plaintext (not necessarily using your attack from above)? Select all that apply.
 - \Box *IV* is randomly generated per encryption
 - \Box *IV* = 1^{*b*} (the bit 1 repeated *b* times)
 - \Box *IV* is a counter starting at 0 and incremented per encryption
 - \square *IV* is a counter starting at a randomly value chosen once during key generation and incremented per encryption
 - □ None of the above
- Q2.7 (2 points) Let C be the encryption of some plaintext M. If Mallory flips with the last bit of C_3 , which of the following blocks of plaintext no longer decrypt to its original value? Select all that apply.
 - $\square M_1 \qquad \square M_3 \qquad \square \text{ None of the above}$
 - \square M_2 \square M_4

Q2.8 (3 points) Which of the following statements are true for AES-GROOT? Select all that apply.

- **Encryption** can be parallelized
- **D**ecryption can be parallelized
- □ AES-GROOT requires padding
- $\hfill\square$ None of the above