Madison \& Ana Summer 2023
 CS 161
 Computer Security

Q1 AES-161

(23 points)
Alice has created a scheme called AES-161 to send messages to Bob securely in the presence of a man-in-the-middle attacker Mallory. Alice and Bob both share a symmetric key K that is secret from everyone else.

The encryption scheme for AES-161 is as follows:

$$
\begin{aligned}
C_{1} & =E_{K}\left(I V_{1} \oplus M_{1}\right) \\
C_{2} & =E_{K}\left(C_{1} \oplus I V_{2} \oplus M_{2}\right) \\
C_{i} & =E_{K}\left(C_{i-1} \oplus C_{i-2} \oplus M_{i}\right)
\end{aligned}
$$

Q1.1 (3 points) Write the decryption formula of AES-161 for M_{i}, for $i>2$.

Solution: $M_{i}=D_{K}\left(C_{i}\right) \oplus C_{i-1} \oplus C_{i-2}$
Solve this by beginning with the encryption formula for M_{i} and isolating M_{i} to its own side.

$$
\begin{array}{lr}
C_{i}=E_{K}\left(C_{i-1} \oplus C_{i-2} \oplus M_{i}\right) & \\
D_{K}\left(C_{i}\right)=C_{i-1} \oplus C_{i-2} \oplus M_{i} & \text { (Call } D_{K} \text { on both sides) } \\
D_{K}\left(C_{i}\right) \oplus C_{i-1}=C_{i-2} \oplus M_{i} & \text { (XOR } C_{i-1} \text { on both sides) } \\
D_{K}\left(C_{i}\right) \oplus C_{i-1} \oplus C_{i-2}=M_{i} & \text { (XOR } C_{i-2} \text { on both sides) }
\end{array}
$$

Verify this solution:

$$
\begin{aligned}
& D_{K}\left(C_{i}\right) \oplus C_{i-1} \oplus C_{i-2} \\
& =D_{K}\left(E_{K}\left(C_{i-1} \oplus C_{i-2} \oplus M_{i}\right)\right) \oplus C_{i-1} \oplus C_{i-2} \\
& =C_{i-1} \oplus C_{i-2} \oplus M_{i} \oplus C_{i-1} \oplus C_{i-2} \\
& =C_{i-1} \oplus C_{i-2} \oplus M_{i} \oplus C_{i-1} \oplus C_{i-2} \\
& =M_{i}
\end{aligned}
$$

Q1.2 (4 points) Is this scheme IND-CPA secure with randomly generated IVs? If you mark "Yes", provide a brief justification (10 words or fewer; no formal proof necessary). If you mark "No", provide a strategy to win the IND-CPA game with probability greater than $1 / 2$.

- Yes

O No

Solution: The scheme is IND-CPA secure with randomly generated IVs. Since E_{K} is a block cipher, its output is a pseudorandom permutation as long as the inputs are unique. Since the IVs are guaranteed to be random, even using the same messages will result in the input to the block cipher being unique, therefore implying that the output will be a pseudorandom permutation, making it indistinguishable from random.

Consider the following attack, called the FEI attack:
Given a ciphertext C of a known plaintext M, Mallory wishes to provide C^{\prime} such that some subset of blocks of Mallory's choosing would be decrypted to M_{i}^{\prime}, where both i and M_{i}^{\prime} are any values of Mallory's choosing. For other values of i, the corresponding $M_{i}^{\prime} \mathrm{s}$ can be anything.

For example, let's say Mallory wants to provide a C^{\prime} so that the first and last blocks of an 8-block message are decrypted into values M_{1}^{\prime} and M_{8}^{\prime} of her choosing while blocks 2 through 7 are not necessarily values of her choosing. In other words, when Bob decrypts the ciphertext C^{\prime}, he will get

$$
M_{1}^{\prime}\left\|x_{1}\right\| x_{2}\left\|x_{3}\right\| x_{4}\left\|x_{5}\right\| x_{6} \| M_{8}^{\prime}
$$

where x_{i} refers to any value.
Q1.3 (6 points) Alice wishes to send a 3-block message M. Mallory wants to perform the FEI attack on the third block.

Provide a formula for all C_{i}^{\prime} that differ from their corresponding C_{i} in terms of $M_{i}, C_{i}, M_{i}^{\prime}$, and C_{i}^{\prime} for specific values of i. Your formula may also include any public values. You don't need to provide a formula for any $C_{i}^{\prime}=C_{i}$.

Solution: Any answer that sets $C_{3}^{\prime}=C_{3}$ and chooses C_{1}^{\prime} and C_{2}^{\prime} such that

$$
C_{1}^{\prime} \oplus C_{2}^{\prime}=C_{1} \oplus C_{2} \oplus M_{3} \oplus M_{3}^{\prime}
$$

is valid. We show this by running Bob's decryption process on the third block.
To get the plaintext for the third-block given C_{i}^{\prime}, Bob will compute $D_{K}\left(C_{3}^{\prime}\right) \oplus C_{2}^{\prime} \oplus C_{1}^{\prime}$ (using the decryption formula from part one). Using our assumption that $C_{3}^{\prime}=C_{3}$ and $C_{1}^{\prime} \oplus C_{2}^{\prime}=C_{1} \oplus C_{2} \oplus M_{3} \oplus M_{3}^{\prime}$, we get that

$$
\begin{aligned}
\text { Third Block's Plaintext } & =D_{K}\left(C_{3}^{\prime}\right) \oplus C_{2}^{\prime} \oplus C_{1}^{\prime} \\
& =D_{K}\left(C_{3}\right) \oplus C_{1} \oplus C_{2} \oplus M_{3} \oplus M_{3}^{\prime} \\
& =D_{K}\left(E_{K}\left(M_{3} \oplus C_{2} \oplus C_{1}\right)\right) \oplus C_{1} \oplus C_{2} \oplus M_{3} \oplus M_{3}^{\prime} \\
& =M_{3} \oplus C_{2} \oplus C_{1} \oplus C_{1} \oplus C_{2} \oplus M_{3} \oplus M_{3}^{\prime} \\
& =M_{3} \oplus C_{2} \oplus C_{1} \oplus C_{1} \oplus C_{2} \oplus M_{3} \oplus M_{3}^{\prime} \\
& =M_{3}^{\prime}
\end{aligned}
$$

Thus, Bob will decrypt the third block as plaintext as M_{3}^{\prime} as desired.

Common Correct Answers:

- $C_{1}^{\prime}=C_{1} \oplus M_{3} \oplus M_{3}^{\prime}, C_{2}^{\prime}=C_{2}, C_{3}^{\prime}=C_{3}$
- $C_{1}^{\prime}=C_{1}, C_{2}^{\prime}=C_{2} \oplus M_{3} \oplus M_{3}^{\prime}, C_{3}^{\prime}=C_{3}$
- $C_{1}^{\prime}=C_{1} \oplus C_{2} \oplus M_{3} \oplus M_{3}^{\prime}, C_{2}^{\prime}=0, C_{3}^{\prime}=C_{3}$
- $C_{1}^{\prime}=0, C_{2}^{\prime}=C_{1} \oplus C_{2} \oplus M_{3} \oplus M_{3}^{\prime}, C_{3}^{\prime}=C_{3}$

Q1.4 (5 points) Assume that Alice is sending a 9-block message. What is the maximum number of blocks that Mallory can perform the FEI attack on?

Solution: 4. It is blocks $1,3,5$, and 7. Or block 2, 4, 6, and 8 .
Q1.5 (5 points) Assume that Alice is sending a 9-block message. Mallory wants to perform the FEI attack on the maximum number of blocks. You can pick which blocks the FEI attack is performed on.

Provide a formula for all C_{i}^{\prime} that differ from their corresponding C_{i} in terms of $M_{i}, C_{i}, M_{i}^{\prime}$, and C_{i}^{\prime} for specific values of i. Your formula may also include any public values. You don't need to provide a formula for any $C_{i}^{\prime}=C_{i}$.

Solution: Our original intention for this question was to modify the $I V$ to be $I V^{\prime}=I V \oplus$ $M_{1} \oplus M_{1}^{\prime}$ first. Then, the attack would be $C_{i}^{\prime}=C_{i} \oplus M_{i+1} \oplus M_{i+1}^{\prime}$ for i in [2, 4, 6, 8], thus making a total of 5 modified blocks.
However, we felt as though we did not make it clear enough that the $I V$ could be modified, and therefore the actual solution for this problem would be to modify $C_{i}^{\prime}=C_{i} \oplus M_{i+1} \oplus M_{i+1}^{\prime}$ for one of the following:

- i in $[2,4,6,8]$
- i in $[1,3,5,7]$

Tony Stark develops a new block cipher mode of operation as follows:

$$
\begin{aligned}
C_{0} & =I V \\
C_{1} & =E_{K}(K) \oplus C_{0} \oplus M_{1} \\
C_{i} & =E_{K}\left(C_{i-1}\right) \oplus M_{i} \\
C & =C_{0}\left\|C_{1}\right\| \cdots \| C_{n}
\end{aligned}
$$

For all parts, assume that $I V$ is randomly generated per encryption unless otherwise stated.
Q2.1 (3 points) Write the decryption formula for M_{i} using AES-GROOT. You don't need to write the formula for M_{1}.

Solution:

$$
\begin{aligned}
M_{1} & =C_{1} \oplus E_{K}(K) \oplus I V \\
M_{i} & =C_{i} \oplus E_{K}\left(C_{i-1}\right)
\end{aligned}
$$

Q2.2 (3 points) AES-GROOT is not IND-CPA secure. Which of the following most accurately describes a way to break IND-CPA for this scheme?

- It is possible to compute a deterministic value from each ciphertext that is the same if the first blocks of the corresponding plaintexts are the same.

○ C_{1} is deterministic. Two ciphertexts will have the same C_{1} if the first blocks of the corresponding plaintexts are the same.

O It is possible to learn the value of K, which can be used to decrypt the ciphertext.

O It is possible to tamper with the value of $I V$ such that the decrypted plaintext block M_{1} is mutated in a predictable manner.

Solution: The first block of ciphertext is, in fact, non-deterministic since it's XORed with a random IV. However, this doesn't provide any useful security since it's easy to just XOR out the IV and reveal the value of $E_{K}(K) \oplus M_{1}$, which is deterministic.
It is not possible to leak the value of K, and tampering with the $I V$ does break integrity, but this does not inherently violate IND-CPA (though it might break other threat models such as IND-CCA).

Q2. 3 (5 points) AES-GROOT is vulnerable to plaintext recovery of the first block of plaintext. Given a ciphertext C of an unknown plaintext M and different plaintext-ciphertext pair (M^{\prime}, C^{\prime}), provide a formula to recover M_{1} in terms of C_{i}, M_{i}^{\prime}, and C_{i}^{\prime} (for any i, e.g. $C_{0}, M_{2}^{\prime}, C_{6}^{\prime}$).

Recall that the $I V$ for some ciphertext C can be referred to as C_{0}.

Solution: Like previously, we can XOR out the value of $C_{0}=I V$, and, because we know the value of C_{1}^{\prime} and M_{1}^{\prime} in our plaintext-ciphertext pair, we can derive the value of $E_{K}(K)=$ $C_{1}^{\prime} \oplus C_{0}^{\prime} \oplus M_{1}^{\prime}$. Thus, to learn M_{1}, we compute

$$
\begin{aligned}
M_{1} & =C_{1} \oplus C_{0} \oplus C_{1}^{\prime} \oplus C_{0}^{\prime} \oplus M_{1}^{\prime} \\
& =\left(E_{K}(K) \oplus C_{0} \oplus M_{1}\right) \oplus C_{0} \oplus\left(E_{K}(K) \oplus C_{0}^{\prime} \oplus M_{1}^{\prime}\right) \oplus C_{0}^{\prime} \oplus M_{1}^{\prime} \\
& =M_{1}
\end{aligned}
$$

If AES-GROOT is implemented with a fixed $I V=0^{b}$ (a fixed block of $b 0$'s), the scheme is vulnerable to full plaintext recovery under the chosen-plaintext attack (CPA) model. Given a ciphertext C of an unknown plaintext and different plaintext-ciphertext pair (M^{\prime}, C^{\prime}), describe a method to recover plaintext block M_{4}.

Q2. 4 (5 points) First, the adversary sends a value $M^{\prime \prime}$ to the challenger. Express your answer in terms of in terms of C_{i}, M_{i}^{\prime}, and C_{i}^{\prime} (for any i).

Solution: We need to learn the value of $E_{K}\left(C_{3}\right)$ in order to recover the value of M_{4}. Since the $I V$ is fixed at 0^{b}, we can send some message with $M_{1}^{\prime \prime}=E_{K}(K) \oplus C_{3}$ and $M_{2}^{\prime \prime}=0^{b}$ ino rder to learn the $E_{K}\left(C_{3}\right)$. To do this, we first need to derive an expression for $E_{K}(K)$. Given (M^{\prime}, C^{\prime}), we know that we can XOR out M_{1}^{\prime} from C_{1}^{\prime} to arrive at

$$
\begin{aligned}
E_{K}(K) & =C_{1}^{\prime} \oplus M_{1}^{\prime} \\
& =E_{K}(K) \oplus 0^{b} \oplus M_{1}^{\prime} \oplus M_{1}^{\prime} \\
& =E_{K}(K)
\end{aligned}
$$

Once we have this expression, we send

$$
\begin{array}{r}
M_{1}^{\prime \prime}=C_{1}^{\prime} \oplus M_{1}^{\prime} \oplus C_{3} \\
M_{2}^{\prime \prime}=0^{b} \\
M^{\prime \prime}=M_{1}^{\prime \prime} \| M_{2}^{\prime \prime}
\end{array}
$$

The first block of the resulting ciphertext is $C_{1}^{\prime \prime}=E_{K}(K) \oplus 0^{b} \oplus E_{K}(K) \oplus C_{3}=C_{3}$. Because of this, the second resulting ciphertext block is $C_{2}^{\prime \prime}=E_{K}\left(C_{3}\right) \oplus 0^{b}=E_{K}\left(C_{3}\right)$.

Q2.5 (5 points) The challenger sends back the encryption of $M^{\prime \prime}$ as $C^{\prime \prime}$. Write an expression for M_{4} in terms of $C_{i}, M_{i}^{\prime}, C_{i}^{\prime}, M_{i}^{\prime \prime}$, and $C_{i}^{\prime \prime}($ for any $i)$.

Solution: Now that we have $C_{2}^{\prime \prime}=E_{K}\left(C_{3}\right)$, we can simply XOR out that value from $C_{4}=$ $E_{K}\left(C_{3}\right) \oplus M_{4}$. The resulting expression is

$$
\begin{aligned}
M_{4} & =C_{4} \oplus C_{2}^{\prime \prime} \\
& =E_{K}\left(C_{3}\right) \oplus M_{4} \oplus E_{K}\left(C_{3}\right) \\
& =M_{4}
\end{aligned}
$$

Q2.6 (4 points) Which of the following methods of choosing $I V$ allows an adversary under CPA to fully recover an arbitrary plaintext (not necessarily using your attack from above)? Select all that apply.
$\square I V$ is randomly generated per encryption

- $I V=1^{b}$ (the bit 1 repeated b times)
- IV is a counter starting at 0 and incremented per encryption
- IV is a counter starting at a randomly value chosen once during key generation and incremented per encryption
\square None of the above

Solution: The above attack is possible with any method of choosing $I V$ that's predictable.
Q2.7 (2 points) Let C be the encryption of some plaintext M. If Mallory flips with the last bit of C_{3}, which of the following blocks of plaintext no longer decrypt to its original value? Select all that apply.
$\square M_{1}$
M_{3}
\square None of the above
$\square M_{2}$
M_{4}

Solution: We see M_{i} depends on C_{i} and C_{i-1}. That implies that a change in C_{3} will result in a change of M_{3} and M_{4}.

Q2.8 (3 points) Which of the following statements are true for AES-GROOT? Select all that apply.
Encryption can be parallelized

Decryption can be parallelized

AES-GROOT requires padding

None of the above

Solution: Decryption can be parallelized because ciphertext decryption does not depend on another plaintext block. However, encryption depends on a previous ciphertext block, so it cannot be parallelized.

Padding is not required because the plaintext blocks are simply XORed with the encryption of the previous ciphertext block, like in CFB.

